

Recent results from the WASA-at-COSY experiment

Andrzej Kupsc Uppsala University for the WASA-at-COSY Collaboration

MENU 2010, Williamsburg 2009-06-03

Bulg

WASA detector

TDC

NIM A594,339

WASA-at-COSY Collaboration

190 members 33 institutions

Experimental programme

Goals:

Symmetries and Symmetry Breaking

Isopin, Chiral symmetry, Fundamental symmetries

• (crypto) exotic hadrons

Main projects:

- \Rightarrow Decays (production) of light mesons π^0 , η , ω , η' , a_0 , f_0
 - Dynamical CSB in $dd \rightarrow \alpha \pi^0$ reaction (\Rightarrow A.Wrońska)
 - Studies of ABC effect (e.g. basic $pn \rightarrow d\pi^0 \pi^0$ system)
 - Search for ${}^{4}\text{He}\eta/{}^{3}\text{He}\eta$ bound states

η decays: physics motivation

- UPPSALA UNIVERSITET
- $\bigcirc \blacksquare$

$$\eta \to \pi^+ \pi^- {\rm e}^+$$

e

Sources of the mesons

- Close threshold $pd \rightarrow {}^{3}\text{He}X$ and $pp \rightarrow ppX$ reactions
- ³He or *p* in FD: $3^{\circ} < \theta < 18^{\circ}$
- Precise $MM(^{3}\text{He}) / MM(pp) (\Delta MM < \Delta IM)$

 $pd \rightarrow {}^{3}\text{He}X$

- + Clean trigger ³He only
- + $\Delta E(^{3}\text{He})$ good for heavier mesons
- Low cross section
- ⇒ For exploratory/precision studies

Sources of the mesons

- Close threshold $pd \rightarrow {}^{3}\text{He}X$ and $pp \rightarrow ppX$ reactions
- ³He or *p* in FD: 3° < θ < 18°
- Precise $MM(^{3}\text{He}) / MM(pp) (\Delta MM < \Delta IM)$

 $\textit{pp} \rightarrow \textit{ppX}$

- Trigger: conditions for decay mode
- $\Delta E(\rho)$ only up to η (TOF, DIRC?)
- + Larger cross section
- ⇒ For rare decays with simple signature

\bigcirc

Collected data

Beam energy

Yield/ cross section

Collected data

 $pp \rightarrow pp\eta$ $T_p = 1.4 \text{ GeV}$

 \geq 100 η/s (10 $\mu\mathrm{b}$)

>10⁸ η decays

Main data sets:

pd \rightarrow ³He η

 $T_{\rm D} = 1.0 \, {\rm GeV}$

10 η /s (0.4 μ b)

 $3 \times 10^7 \eta$ decays

- $pd \rightarrow ^{3}He\eta$
 - \Rightarrow (2008) 1.1×10⁷ η s
 - (2009) 2.0×10⁷ ηs

 $pp \rightarrow pp\eta$

⇒ 4 weeks (2007)+(2008) 8 weeks (2010)

Status of the analysis

 $(\Rightarrow$ H. Bhatt)

- $\eta \rightarrow e^+e^-e^+e^ (\Rightarrow$ K.Lalwani)
- Rare decays: $\eta, \pi^0 \rightarrow e^+e^-, \eta \rightarrow \pi^0 e^+e^-$
- Towards ω and η' decays

• $\eta \rightarrow 3\pi$

• $\eta \to \pi^+ \pi^- \gamma$ • $\eta \rightarrow e^+ e^- \gamma$

• $\eta \to \pi^0 \gamma \gamma$

• $\eta \rightarrow \pi^+ \pi^- \mathbf{e}^+ \mathbf{e}^-$

$\eta \rightarrow 3\pi$: motivation

$$\Rightarrow \frac{d\Gamma}{dxdy} \exp vs \frac{\Gamma}{dxdy}_{th}$$

$$x = (T_{+} - T_{-})/\sqrt{3}\langle T \rangle$$

$$y = T_{0}/\langle T \rangle - 1$$

$$z = x^{2} + y^{2}$$

Status of $\eta \rightarrow 3\pi^0$ Dalitz plot

Dalitz plot for $\eta \to \pi^0 \pi^0 \pi^0$

- $|\mathcal{A}_{000}(z,\phi)|^2 \propto 1 + 2 \frac{\alpha}{2} z + ...$
- Experiments: weighted average $\alpha = -0.0312 \pm 0.0017$
- ChPT LO: $\alpha = 0$, NLO, NNLO $\alpha > 0$

CELSIUS/WASA: 75k events, PRC76,048201(07) WASA-at-COSY: 120k events $pp \rightarrow pp\eta$ PLB667,24(09)

0

Status of $\eta \to \pi^+ \pi^- \pi^0$ Dalitz plot

- Recent precise data KLOE 1.3×10⁶ JHEP 0805:006(08)
- a, b, f do not agree with NNLO ChPT

Bijnens, Ghobani JHEP11:030(07)

WASA-at-COSY two independent measurements

- 2008 data 1 2×10⁵ $\eta \rightarrow \pi^+\pi^-\pi^0$ in the Dalitz plot
- background $pd \rightarrow {}^{3} \mathrm{He} \pi^{+} \pi^{-} \pi^{0}$

Analysis P. Adlarsson

- 2-3 $\eta \rightarrow \pi^+ \pi^- \pi^0/s$
- Run finished last Monday: $\approx 10^7 \ \eta \rightarrow \pi^+ \pi^- \pi^0$
- Trigger accepts all decays with charged particles

Analysis D. Coderre

 \bigcirc

- Goal: measure E_{γ} distribution: VMD vs box anomaly
- Main background: $\eta \to \pi^+ \pi^- \pi^0$, $\rho d \to {}^3 {
 m He} \pi^+ \pi^-$
- Kinematical 4C fit $pd \rightarrow {}^{3} \mathrm{He} \pi^{+} \pi^{-} \gamma$
- Sample 13750±150 events

Analysis Ch. F. Redmer

 $\eta \to \pi^+ \pi^- \gamma$

- Second variable θ_{π} (π^+ angle in di-pion CMS)
- $|\mathcal{A}(E_{\gamma},\cos heta_{\pi})|^2\propto\sin^2 heta_{\pi}$

- simplest matrix element does not describe data (blue)
- good agreement with VMD (red)

 $\eta \rightarrow \pi^+ \pi^- \gamma$ results

- p wave interaction
- higher partial wave contributions negligible

Ch. F. Redmer

Conversion decays

Double off shell form factors:

- Test VMD
- Give SM contribution to

...
$$\mathcal{P}
ightarrow \mathbf{e}^+ \mathbf{e}^-$$

- ... muon *g* 2
 - Decays of interest:

$$-\eta \rightarrow e^+e^-e^+e^-$$

 $- \omega \rightarrow \pi^{0} \mathbf{e}^{+} \mathbf{e}^{-} \dots$

- Background $\eta \rightarrow \gamma \gamma$ (conversion in the detector)
- Direct $\pi^+\pi^-$ production

Analysis M. Berlowski, M. Hodana, L. Yurev

 $\eta \rightarrow \mathbf{e}^+ \mathbf{e}^- \pi^+ \pi^- / \eta \rightarrow \mathbf{e}^+ \mathbf{e}^- \mathbf{e}^+ \mathbf{e}^-$

Exploratory analysis of the 2008 *pd* data $\eta \rightarrow e^+e^-\pi^+\pi^-$

- 150 200 events
- S/B \sim 2.5:1
- acceptance ca. 7%
- Normalization to $\eta \rightarrow \pi^+ \pi^- \pi_D^0$

- $\eta \rightarrow e^+e^-e^+e^-$
 - 15 30 candidates
 - acceptance ca. 5%
 - S:B \sim 1:1

Analysis D. Coderre, L.Yurev

Rare decays: $\pi^0 \rightarrow e^+e^-$

• Exp $BR_{no-rad} = (7.48 \pm 0.29_{stat} \pm 0.25_{syst}) \times 10^{-8}$ KTeV (794 events) PRD75:012004,2007

- $BR^{SM}(\pi^0 \rightarrow e^+e^-) = (6.23 \pm 0.09) \times 10^{-8}$ Dorokhov et al., PRD75:114007,2007
- $pp
 ightarrow pp \pi^0 \, T_p = 0.55 \; {
 m GeV} \; (1.3 \; {
 m mb}) \qquad {
 m below} \; pp
 ightarrow pp \pi^+ \pi^-$
- background (π⁰ → e⁺e⁻γ,...) studied in 2010 test run: reconstructed π⁰ → e⁺e⁻γ 9/s (total 4.5×10⁶)
 Expect about 100 π⁰ → e⁺e⁻

Analysis: C-O. Gullström

Rare decays: $\eta \rightarrow e^+e^-$

- 2008 $pp \rightarrow pp\eta$ data with 4.4×10⁷ η s:
- Goal improve BR limit

CELSIUS/WASA PRD77:032004(08)

acceptance 5% background $\eta \rightarrow e^+ e^- \gamma$, $pp \rightarrow pp \pi^+ \pi^-$,...

Analysis: M. Berlowski

$\bigcirc \blacksquare$

- PDG BR < 4×10^{−5}
- Test C up to $BR pprox 10^{-8}$ (decay via $\pi^0 \gamma^* \gamma^*$)
- Analysis of 2008 $pd \rightarrow {}^{3}\text{He}\eta$ data Goal: improve BR limit Background $pd \rightarrow {}^{3}\text{He}\pi^{0}\pi^{0}$ Acceptance $\approx 1\%$
- Continue with $pp \rightarrow pp\eta$ data

Rare decays: $\eta \rightarrow e^+ e^- \pi^0$

Analysis: A. Winnemöller

\bigcirc

Towards ω decays

- $pd \rightarrow {}^{3}\text{He}\omega$ at 1.45 GeV
- $\sigma = 85 \text{ nb}$ CELSIUS/WASA PLB668:258,08
- $2 \times 10^6 \omega$ /month (from $pd \rightarrow {}^{3}\text{He}\eta$)
- $pp \rightarrow pp\omega$ at Q = 60 90 MeV (2.85–2.95 GeV/c)

Towards η' decays

green: nucl-th/9510010 black points: PRD9,1917(74), PRLB374,283(96)

- Estimate of σ(pd →³Heη') at T_p = 1.80, 2.14 GeV ≈ 1 nb too low for decays
- $pp \rightarrow pp\eta' T_p = 2.54 \text{ GeV } 300 \text{ nb} (\text{COSY-11})$
- ... fast protons

Analysis J. Zlomanczuk, C. Zheng

- Analysis of 2008 *pd* soon will be finished
- Second generation analysis of 2009 pd data
- Analysis of new large statistics $pp \rightarrow pp\eta$ data

Outlook

- Starting ω decay programme
- $\sigma(pd \rightarrow {}^{3}\text{He}\eta', a^{0}, f^{0}) = \mathcal{O}(nb)$ too low for decays
- \Rightarrow try $pp \rightarrow pp\eta'$
 - byproduct: meson production dynamics
 - Other results: ABC effect, CSB $dd \rightarrow \alpha \pi^0$, search for η -mesic nuclei

$pn \rightarrow d\pi^0 \pi^0$ reaction

- ABC $M(\pi\pi)$ enhancement in light ion reactions (1961)
- WASA: Exclusive measurement of the simplest system: $pn \rightarrow d\pi^0 \pi^0$

Tp = 1.0, 1.2, 1.4 GeV

 Narrow ΔΔ (np) state M = 2.37 GeV/c² Γ ≈ 75 MeV/c²?